Increased permeability of intestinal epithelial monolayers mediated by electroporation.

نویسندگان

  • Esi B Ghartey-Tagoe
  • Jeremy S Morgan
  • Andrew S Neish
  • Mark R Prausnitz
چکیده

This study assessed whether electroporation enhances transport across intact intestinal epithelial monolayers that mimic the intestinal epithelium. Confluent Caco-2 monolayers were exposed to electroporation pulses and then monitored over time for transepithelial transport of calcein, a small fluorescent tracer, or fluorescein-labeled bovine serum albumin, a large protein. Cumulative transport of both molecules across the monolayers increased significantly (up to 34-fold) after electroporation and depended on electroporation voltage and pulse length and on molecular size. Increased transport was accompanied by a decrease in the transepithelial electrical resistance of the monolayers. Further analysis of these results suggests that the increase in transport observed after electroporation is due, at least in part, to the killing of a small fraction of cells, which increased transport across "leaky" dead cells that remained adherent and increased transport through small, temporary holes left by dead cells that detached, but appeared to reseal within minutes by monolayer restitution. These findings could form the basis for the development of electroporation as a clinical tool to increase intestinal permeability and, thereby, increase the absorption of poorly absorbed drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmid DNA and siRNA transfection of intestinal epithelial monolayers by electroporation.

This study was conducted to evaluate the ability of electroporation to efficiently transfect differentiated intestinal epithelial monolayers with plasmid DNA and to determine whether electroporation can transfect these monolayers with short-interfering RNA (siRNA) to cause gene silencing. Confluent T84 monolayers were transfected with reporter plasmids expressing luciferase or green-fluorescent...

متن کامل

Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation.

Tight junctions serve as the rate-limiting barrier to passive movement of hydrophilic solutes across intestinal epithelia. After activation of Na+-glucose cotransport, the permeability of intestinal tight junctions is increased. Because previous analyses of this physiological tight junction regulation have been restricted to intact mucosae, dissection of the mechanisms underlying this process h...

متن کامل

Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier.

A TNF-alpha-induced increase in intestinal epithelial tight junction (TJ) permeability has been proposed to be an important proinflammatory mechanism contributing to intestinal inflammation in Crohn's disease and other inflammatory conditions. Previous studies from our laboratory suggested that the TNF-alpha-induced increase in intestinal TJ permeability was mediated by an increase in myosin li...

متن کامل

Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells

Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...

متن کامل

Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

BACKGROUND Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of controlled release : official journal of the Controlled Release Society

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2005